Función discontinua

Se dice que una función $f(x)$ es discontinua en un punto $x_0$ cuando el límite de $f(x)$ al aproximarse $x$ a $x_0$ no coincide con el valor que la función toma en ese punto: $$ \lim_{x \rightarrow x_0} f(x) \ne f(x_0) $$ Ese punto $x_0$ recibe el nombre de punto de discontinuidad.

Ejemplo de función discontinua

ejemplo de función discontinua

Discontinuidades eliminables y no eliminables

  • Una discontinuidad es eliminable si puede corregirse redefiniendo convenientemente la función para que resulte continua.
  • Se denomina no eliminable cuando no existe forma de suprimirla mediante una redefinición local.

¿Por qué aparecen las discontinuidades?

Las discontinuidades pueden producirse por diversas razones, según el comportamiento de la función en torno al punto en cuestión:

Discontinuidad de salto (primera especie)

En $x_0$, el límite lateral derecho y el límite lateral izquierdo de la función no coinciden. A este caso se le llama discontinuidad de salto o discontinuidad de primera especie: $$ \lim_{x \rightarrow x_0^+} f(x) \ne \lim_{x \rightarrow x_0^-} f(x) $$

La función puede estar definida o no en $x_0$.

Ejemplo

La función signo presenta una discontinuidad en $x_0 = 0$:

$$ \frac{|x|}{x} $$

ya que los límites laterales son diferentes:

$$ \lim_{x \rightarrow 0^+} \frac{|x|}{x} = 1 $$

$$ \lim_{x \rightarrow 0^-} \frac{|x|}{x} = -1 $$

Gráficamente se observa:

gráfico de una discontinuidad de salto

En $x_0$ la función pasa bruscamente de $-1$ a $+1$.

Discontinuidad esencial (segunda especie)

En $x_0$, al menos uno de los límites laterales es infinito o no existe. A esta situación se la denomina discontinuidad esencial o discontinuidad de segunda especie: $$ \lim_{x \rightarrow x_0^±} f(x) \ne f(x_0) = \{ ±\infty , \text{no existe} \} $$

Ejemplo

La función $$ \frac{1}{x} $$ es discontinua en $x_0 = 0$,

porque el límite lateral derecho tiende a infinito:

$$ \lim_{x \rightarrow 0^+} = +\infty $$

Nota. En este caso, el límite lateral izquierdo tiende a menos infinito: $$ \lim_{x \rightarrow 0^-} = -\infty $$ En general, se habla de discontinuidad de segunda especie cuando al menos uno de los límites laterales diverge ($±\infty$) o no está definido.

La gráfica es la siguiente:

gráfico de una discontinuidad esencial

Discontinuidad evitable (tercera especie)

En $x_0$, el límite de la función existe pero no coincide con el valor que la función adopta en ese punto: $$ \lim_{x \rightarrow x_0} f(x) \ne f(x_0) $$

Se denomina discontinuidad evitable, ya que puede resolverse redefiniendo el valor de la función en $x_0$ para que coincida con el límite.

Este tipo de discontinuidad aparece con frecuencia en funciones definidas por tramos.

Ejemplo

Consideremos la función:

$$ f(x) = \frac{\sin x}{x} $$

En $x_0 = 0$ la función no está definida, pero el límite sí existe:

$$ \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1 $$

Este es un límite muy conocido.

gráfico de una discontinuidad evitable

La discontinuidad puede eliminarse definiendo $f(0) = 1$:

$$ f(x) = \begin{cases} \frac{\sin x}{x} \: \text{si} \: x \ne 0 \\ 1 \: \text{si} \: x = 0 \end{cases} $$

Con esta redefinición la función se hace continua:

extensión continua de una función

Ejemplo 2

Veamos ahora esta función definida por tramos:

$$ f(x) = \begin{cases} x+2 \: \text{si} \: x \ne 2 \\ 1 \: \text{si} \: x = 2 \end{cases} $$

Esta función presenta una discontinuidad en $x_0 = 2$.

El límite cuando $x$ tiende a 2 existe:

$$ \lim_{x \rightarrow 2} f(x) = 4 $$

Es decir, los límites laterales son iguales.

Sin embargo, el valor de la función en $x=2$ es:

$$ f(2) = 1 $$

Por lo tanto, aunque el límite en $x_0$ existe, la función adopta un valor distinto.

gráfico de una discontinuidad evitable en una función por tramos

Para eliminar esta discontinuidad basta redefinir la función así:

$$ f(x) = \begin{cases} x+2 \: \text{si} \: x \ne 2 \\ 4 \: \text{si} \: x = 2 \end{cases} $$

De esta manera la función se vuelve continua:

extensión continua de la función por tramos

Y así sucesivamente.

 

 


 

Please feel free to point out any errors or typos, or share suggestions to improve these notes.

FacebookTwitterLinkedinLinkedin

Funciones

Análisis Matemático

Más temas

Funciones de dos variables